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Abstract Nanostructures may be fabricated from metal nanoclusters such as gold
or platinum, which are of interest for catalytic and structural characteristics, or from
nano forms of carbon allotropes. Here, informational thermodynamic properties such
as free energy, enthalpy, and entropy are calculated using a graph network model at
T = 298.15 K. We calculate the partition function using Euclidean adjacency matrices
from the Hamiltonian and estimated bond energies. The summed atomic displacement
from the Kirchhoff index has power law behavior, while the thermodynamic proper-
ties exhibit large N logarithmic behavior: however, the data shows structurally related
anomalies.

Keywords Metal nanocluster · Statistical thermodynamics · Nano carbon

1 Introduction

1.1 Metal nanoclusters

Gold and platinum have been valued for ornamental jewelry since antiquity. In particu-
lar, pure gold does not easily bond with other elements and is known as the ‘noblest’ of
metals. In recent years, man has created nano forms of gold and platinum, which have
markedly different characteristics than the bulk materials. The nanosized form of gold
exhibits catalytic properties unknown in the bulk [1]. Likewise, nanosized platinum has
remarkable catalytic properties, with icosahedral platinum clusters recently reporting
an area-specific activity of 0.83 mA/cm2 Pt, in an oxygen reduction reaction (ORR) [2].
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Table 1 Magic number formulas for the icosahedral, cuboctahedral, and decahedral structures

Definition Notation Cluster structure

ICO CO (FCC) DECA

Total number
of atoms

N 10 L3

3 + 5L2 + 11 L
3 + 1 10 L3

3 + 5L2 + 11 L
3 + 1(L even)

10 L3

3 + 3L2 − L
3 (L odd)

5 L3

6 + L
6

Number of
surface atoms

NS 10L2 + 2 10L2 + 2(L even)

10L2 − 4L(L odd)

5L2 − 10L + 7

Number
of bonds

NB 20L3 + 12L2+4L 20L3 + 15L2 + 7L(L even)

20L3 − 8L(L odd)

5L3 − 15 L2

2 + 7 L
2 − 1

The first one has been published in references [3,4], while the cuboctahedral and decahedral ones are new

The phrase ‘nanocluster’ is often used to describe nanosized metal particles, since
they can form structures which strictly speaking are not crystalline in that they do
not have bulk symmetry, whereas a cluster sized form may exist in the nano regime.
There are many types of shape and symmetry which may exist in nanosized materials
[3], among them icosahedral, cuboctahedral, and decahedral. Gold and platinum are
face-centered-cubic (FCC) metals, so we use this structure for the nanosized material.
Note that the cuboctahedral clusters can be described as an FCC structure, whereas the
icosahedral and decahedral cannot. We examine the properties of gold and platinum
nanoclusters with these symmetries for sizes up to several thousand atoms.

Nanoclusters are created from atoms completing layers or shells sequentially giving
rise to what has been phrased as ‘magic numbers’, or the number of atoms to complete
a shell over a beginning layer. Thus, for some clusters, there has developed a large
description of formulas, giving the relation of number of atoms, surface atoms, and
bonds as a function of L , the number of shells in the cluster [4]. A summary of these
formulas for icosahedral, cuboctahedral, and decahedral clusters for our purposes is
given in Table 1. We note that gold nanoclusters have been formed in the icosahedral
[5–8], cuboctahedral [9], decahedral [6,8,10], and cubic [5] forms. Also, platinum has
been made in the icosahedral [2,11], cuboctahedral [12], decahedral [11], and cubic
[12,13] shapes.

There are some previous studies on the thermodynamic properties of gold and plat-
inum nanoclusters. There is a plethora of models regarding the melting of clusters,
but not when it comes to describing the thermodynamic properties of gold and plat-
inum nanoclusters specifically. A study of gold nanoclusters [14] looked at the internal
energy, entropy, and free energy as a function of cluster size, using molecular dynam-
ics and the ‘glue’ potential for gold. Also, a molecular dynamics study on platinum
nanoclusters [15] showed that the melting temperature, enthalpy, and entropy can be
approximated by a linear model of N (−1/3), where N is the number of atoms in the
nanocluster.

1.2 Carbon nanostructures

Carbon allotropes exhibit an amazing diversity of structure, properties, and bonding.
Carbon nanostructures consist of fullerenes, endohedral fullerenes, nanotubes, and the
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related forms of nanobuds, nano-onions, nanotori and graphene nanoflakes [16]. The
first fullerene, C60, was discovered in 1985 [17], nanotubes in 1991 [18], and graphene
in 2004 [19]. The highly valued allotrope, diamond, is transparent and semiconducting
with sp3 hybrid bonds, while the thermodynamically stable graphite is an opaque con-
ductor with sp2 bonding. The nanostructures demonstrate an equally diverse character,
with a variety of structures and properties.

Bonding in carbon compounds ranges from single C–C bonds to triple C ≡ C
bonds with a range of bond energy with the different types of bonds. In 1947, Gordy
postulated that the bond energy varies as the inverse square of the bond length, with
empirical coefficients [20]. These parameters were updated by Paolini in 1990 [21].
Pauling came up with an inverse variation of bond energy to bond length for car-
bon compounds in 1954 [22]. The nanostructures, in particular, most frequently have
sp2 hybrid bonding [23]. Previous molecular-dynamics (MD) modeling shows that
fullerenes and nanotubes can self-assemble from high temperature amorphous car-
bon precursors [24,25]. Also, for nanotubes, there are some existing models for arc-
evaporated or laser-vaporization processes [25]. However, a thorough understanding
needs more work, especially in the case where catalytic particles are not part of the
growth model.

It has taken some time after the original discoveries of the carbon nanostructures
for their thermal properties to be measured. There exist a few results for C60 [26],
and nanotubes were only recently measured by a Russian group [27]. These groups
measured the specific heat, enthalpy, entropy, and Gibbs free energy for C60 and
nanotubes, respectively. Our approach consists of an informational complex systems
method, based on the statistical mechanics of networks and graph theory [28]. In this
approach, atoms are situated at the vertices of the network, and bonds are represented
by links between vertices. In this way, we can model the behavior of different systems,
but we caution that this is not a molecular dynamics (MD) procedure, or even density
functional theory (DFT). Thus our calculations are not directly comparable to the
experimental thermal properties measured by other groups.

2 Methods

We use a theoretical graph—network approach, with atoms at the vertices, and links as
nearest neighbor bonds. An adjacency matrix is created which contains a 1 at position
(i, j) if atom j is in the set of nearest neighbors of atoms i , i.e., when the distance ri j

is approximately equal to rmin = min i �= j ri j . To allow for small deviations from the
average bond length, we shall define i and j as nearest neighbors, and separate them
from the rest by requiring that ri j < rc where rc is a threshold value, appropriate for
the nanocluster. Thus,

A(i, j) =
{

1 if ri j < rc and i �= j
0 otherwise.

(1)

As an alternative, we may consider the actual Euclidean distances in the adjacency
matrix, i.e., replace every nonzero entry A(i, j) in the previous definition by the actual
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Table 2 Experimental parameters for gold, platinum, and carbon

Parameter Gold Platinum Carbon

D0(eV) 2.302 [29] 3.683 [30] 6.0 [30]

βr (Å−1) 1.586426 [29] 1.64249 [30] 2.1 [30]

S 1.95 [29] 2.24297 [30] 1.22 [30]

r0 (Å) 2.463316 [29] 2.384 [30] 1.39 [30]

Gx1010 (N/m2) (298 K) 2.60 [33] 6.09 [33] N/A

γ (J/m2) (298 K) 2.052 [33] 2.502 [33] N/A

rb (Å) (bulk) 2.884 [34] 2.775 [35] N/A

k (N/m) 21.7 [39] 48.3 [40] 305 [41] graphene

The source of the reference is listed in brackets

distance ri j and keep the zeros. We use the modified Euclidean matrix to create a model
Hamiltonian.

Recently, the Pauling relation gives the bond energy as a function of bond distance as

EB = D0 exp
[
−βr

√
2S(rb − r0)

]
(2)

where rb is the nearest neighbor bond length, in angstroms and the other parameters
are empirically derived [29,30]. See Table 2 for a list of parameters for gold, platinum,
and carbon. We then use a nearest neighbor Hamiltonian, H = EB in the calculations.
It is worth mentioning that the nearest neighbor distances in icosahedra do not consist
of a single bond length, but that these structures have two neighboring distances, with
the tangential bond length to radial bond length ratio given by

rtan

rrad
= 2

(5)1/4
√

τ
≈ 1.05; τ = (1 + √

5)

2
(3)

and τ is the golden mean [31]. Also, carbon nanostructures may have bonds of
differing lengths as fullerenes are known to have several nearest neighbor bonds [32].
Our Hamiltonian accounts for these changes in bond length in a well-defined manner,
through the variation of EB .

It has been observed that the lattice constant of metal nanoclusters decreases from
the bulk value as the size of the cluster becomes smaller. A model for this behavior is
given by

�a

a
= − 1

1 + K · D
; K = α1/2G

γ
(4)

where a is the lattice constant, G is the shear modulus, γ is the surface energy, α is
a shape factor (=1 for a spherical particle) and D (= 2R) is the nanocluster diameter
in angstroms [33]. The relevant values for these parameters are listed in Table 2.
Experimentally, this behavior is confirmed, with measurements for both gold [34],
and platinum [35]. The nearest neighbors in the [110] direction determine the bond
length in an FCC metal with rb = √

2a/2. Originally, the complex systems network
theory used the adjacency matrix [28] in the model, but we use the more general
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Hamiltonian approach, where the partition function is

Z = Tr e−βH (5)

and β = 1/kB T is the inverse temperature, with kB Boltzmann’s constant, T =
298.15 K or room temperature for our purposes, and H is the Hamiltonian matrix. We
calculate the Euclidean adjacency matrix and use EB to convert it into the Hamil-
tonian. The statistical mechanics quantities are then calculated from the probability of
occupying a state j as

p j = eβλ j

Z
(6)

where λ j is an eigenvalue of the Hamiltonian matrix. The informational Shannon
entropy is then

S(G, β) = −
N∑

j=1

p j ln p j (7)

for a graph G [37]. The total energy H , or enthalpy, and Helmholtz free energy, F ,
are related by F = H–TS, which results in the expressions

H(G, β) = − 1

Z
Tr

(
−He−βH

)
(8)

and

F(G, β) = − 1

β
ln Z (9)

where H is again the Hamiltonian matrix [28]. As written, the entropy is dimensionless,
while the enthalpy has units of EB , and the free energy has units related to kB T .
However, since we are not comparing our results to experimentally measured data, we
do not try to interpret the results with more than the N dependence growth.

The summed atomic displacement may be calculated from Kirchhoff index, and is
valid for any graph G [37]. The Kirchhoff index can be determined from the Laplacian
matrix, where L is defined as

L = � − A (10)

and � is a diagonal matrix of order N , with diagonal elements = the number of first
neighbors, or the number of non-zero entries in a column in the adjacency (0,1) matrix,
A [38]. Then the Kirchhoff index is

K f (G) = N
N−1∑
i=1

1

λi
(11)

and λi is an eigenvalue of L, with the N th eigenvalue omitted since it equals zero
[38]. The atomic displacement is given as

�x =
√∑N

i=1
(�xi )2 =

√
1

βk N
K f (G) (12)
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Fig. 1 Nanostructures examined in this manuscript. a Icosahedron 55 atoms. b Cuboctahedron 55 atoms.
c Decahedron 54 atoms d Carbon C60. e 100 atom graphene nanoflake. f (10,10) nanotube

where k is the material nearest neighbor force constant, and β is the inverse temperature
[37]. We use the bulk force constant for gold [39] platinum [40] and carbon (graphene)
[41], since clusters over 13 atoms have this larger value [39].

3 Results

We plot the nanostructures we examine in Fig. 1, including clusters of icosahe-
dra, cuboctahedra, and decahedra, as well as nano forms of carbon: C60, graphene
nanoflakes, and a (10,10) nanotube. The results of the thermodynamic calculations
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Fig. 2 Free energy of the nanostructures versus N , the number of atoms

are plotted in Figs. 2, 3, and 4. These three figures show the thermodynamic prop-
erties of fullerenes from C20 to C720, graphene nanoflakes up to 5,000 atoms in size,
and of a nanotube, the (10,10) armchair version, with up to 8,360 atoms. Figure 2
shows the plots of free energy, F , as a function of N , while Figs. 3 and 4 show the
enthalpy, H , and entropy, S, respectively. In Figs. 2 and 3, the free energy and enthalpy
fits have opposite slopes in the data presented. The negative slope is directly related
to the decreasing bond length of the metal nanoclusters and the bond energy while
the carbon forms show a positive slope since the bond length is unrelated to N . The
least-squares regression for the fit, R2, is shown in the inset.

The entropy calculations in Fig. 4 show anomalies for the fullerenes, icosahedral,
and cuboctahedral structures. The fullerene and icosahedral curves have an anomaly
at N = 55–60, while the cuboctahedral structure has a dip at N = 6,525. It is known
that the fullerene C60 has different bond lengths ranging from 1.455 Å to 1.391 Å
[42]. The small values are very close the value of r0 in Table 2 for carbon. Such a
wide variation does not occur in neighboring fullerenes [32]. Table 3 shows the near-
est neighbor count for the icosahedral and cuboctahedral structures near the entropy
anomalies. For the icosahedral 55 atom structure, there are zero 9-coordinated neigh-
bors, while the cuboctahedral 6,525 atom structure has zero 7-coordinated neighbors.
This also accounts for the slight increase in the free energy and enthalpy data for the
cuboctahedral curves. The decahedral structure does not have any nearest neighbor
anomalies, and we see that the corresponding data is smooth. The nearest neighbors
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Fig. 3 Enthalpy of the nanostructures versus N , the number of atoms

appear as entries in a column of the Hamiltonian matrix, and thus the eigenvalues are
changed affecting the entropy calculations. There is an additional anomaly in that the
entropy of the fullerenes does not approach zero as the number of atoms, N , goes to
zero. This is no doubt related to the bond length in C20.

Informational entropy has been calculated as far back as 1984 [43] in neutral atoms
with Thomas–Fermi statistics. It was postulated then and subsequently in 1998 [36],
that informational entropy has logarithmic behavior as a function of N . Massen and
Panos [36] modeled the informational entropy for atoms, Na atomic clusters, and nuclei
and determined the logarithmic dependence. Estrada and Hatano modeled informa-
tional statistical mechanics in 2007 [28], and the large-N behavior was shown to be
logarithmic. In all of these modeling situations, the logarithmic dependence arises
from the calculations, from the definitions. Based on our data, we suggest that an
informational thermodynamic property P , has the following behavior:

P = A + B ln(N ) (13)

where A and B are universal constants and N is the number of atoms. Note that in
Figs. 2, 3 and 4, the fit is better for large N , as suggested by Estrada and Hatano [28].
This generalization does not, however, allow for structural anomalies, which we have
shown to affect the data.
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Fig. 4 Entropy of the nanostructures versus N , the number of atoms. The lines are smooth curve fits

Table 3 Nearest neighbors counts for icosahedral and cuboctahedral structures

N N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12

I-13 0 0 0 0 0 12 0 0 0 0 0 1

I-55 0 0 0 0 0 12 0 30 0 0 0 13

I-147 0 0 0 0 0 12 0 60 20 0 0 55

CO-4796 0 0 0 0 0 24 216 486 440 0 0 3,630

CO-6525 0 0 0 0 0 12 0 330 1,100 0 0 5,083

CO-7826 0 0 0 0 0 24 264 726 624 0 0 6,188

For example, N6 refers to the number of sites with 6-fold coordinated neighbors. The number of atoms in
the structures agrees with the sum of nearest neighbors. Note the differences in the number of neighbors,
accounting for the anomalies in the calculations

The atomic displacement is plotted in Fig. 5 for gold and platinum nanoclusters and
for carbon nanostructures. These plots follow a power law fit, as might be expected
since the Kirchhoff index grows with N , and the major change in the data is the force
constant. The Kirchhoff index does not appear to be structurally sensitive.

The growth of carbon nanostructures has not been completely determined. The
original fullerene, C60, was formed from cluster beam experiments [17], and a few
years later, solid crystals were fabricated, allowing bulk samples to be studied [44].
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Fig. 5 Atomic displacement of the nanostructures versus N , the number of atoms

Carbon nanotubes are thought to grow from a metal catalyst [45], supplied with a car-
bon feedstock, with growth terminating at some point. A reliable bottom-up approach
to creating graphene nanoflakes has yet to be developed, so that the novel features of
these carbon nanostructures remains unexplored. Thus the mechanism of growth as
a function of the number of atoms, N , is best determined for carbon nanotubes, with
the other structures less well understood.

Likewise, although there has been a large increase in activity of chemical synthesis
of metal nanoclusters, so that a large variety of elements, alloys, and structures are
now possible, a definitive model for crystal growth is still being developed. Recent
progress on gold [46] and platinum [47] nanoclusters includes a nano phase diagram,
where the temperature and structure of nanophase material has been plotted. How-
ever, platinum especially has been undergoing rapid changes in development, so that
additional changes may be expected.

4 Conclusion

We have demonstrated that the informational thermodynamic properties follow a loga-
rithmic relationship for metal nanoclusters and nano forms of carbon. The Hamiltonian
was based on nearest neighbor bond energies derived from the Euclidean adjacency
matrix. We have accounted for the decreasing size of metal nanoclusters and this affects
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the slope of the free energy and enthalpy data. The large N logarithmic behavior is in
agreement with preexisting versions of informational statistical mechanics, with the
data showing structurally related anomalies. These structural anomalies are related to
the variation in nearest neighbor bond length and coordination. The atomic displace-
ment derived from the Kirchhoff index follows a power law regression, increasing
with larger numbers of atoms.

Acknowledgments F. H. Kaatz thanks A. Fasolino for sharing atomic coordinates of rippled graphene,
and thanks E. Estrada for programming assistance.

5 Appendix

We recently published some results describing power law behavior with the thermo-
dynamic properties [48–50]. We now show that these power law relationships are
equivalent to the logarithmic properties shown in this manuscript.

Suppose the thermodynamic property is P and we consider

P

NB
= A + B ln(N )

cN
(14)

where NB is the number of bonds and A, B, and c are constants with NB= cN. We
then have

N = cN − (c − 1)N = cN

(
1 − c − 1

c

)
(15)

and thus

ln(N ) = ln(cN ) + ln

(
1 − c − 1

c

)
. (16)

If we use this expression in Eq. (14), we have

P

NB
= A

cN
+ B

ln(cN )

cN
+ B

ln
(
1 + c−1

c

)
cN

= A + B ln
( 2c−1

c

)
cN

+ B
ln(cN )

cN
. (17)

Now both terms on the right go to zero as N → ∞, but the first one is faster than
the second one. Hence for large N, the dominant term is BN−1

B ln (NB). Because
ln (NB) < (NB)α for N → ∞ and α > 0, we shall have the result we are intending to
prove

P

NB
∼ B(NB)−1+α, N → ∞, α > 0, (18)

and the original expression for P (Eq. 14) shows the logarithmic behavior.
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